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ABSTRACT
In this article, we obtain point and interval estimates of multicompo-
nent stress-strength reliability model of an s-out-of-j system using
classical and Bayesian approaches by assuming both stress and
strength variables follow a Chen distribution with a common shape
parameter which may be known or unknown. The uniformly min-
imum variance unbiased estimator of reliability is obtained analytic-
ally when the common parameter is known. The behavior of
proposed reliability estimates is studied using the estimated risks
through Monte Carlo simulations and comments are obtained.
Finally, a data set is analyzed for illustrative purposes.
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1. Introduction

In the literature, the term stress-strength in context of reliability was initially introduced
by Church and Harris (1970). Since then several authors have discussed single-compo-
nent stress-strength models by taking into consideration of various lifetime distribu-
tions. The stress-strength model defines the reliability R of a component as the
probability that strength of a unit (X) is greater than the stress (Z) imposed on it, that
is, R ¼ PðX>ZÞ. Estimation of stress-strength reliability has attracted some attention
among researchers. We refer to Kotz, Lumelskii, and Pensky (2003) for different appli-
cations of such estimation problems. The stress-strength plays an important role in reli-
ability analysis, for example, if X denotes the strength of a system which is subjected to
a stress Z, then the reliability R measures the system performance and it is very com-
mon in the context of mechanical reliability of a system. Note that a system fails when-
ever the applied stress becomes greater than its strength.
A system having more than one component is called a multicomponent system. A

multicomponent system may be a series system, a parallel system, or some combinations
of these two systems. A bridge structure is an example of a multicomponent system. The
series and parallel systems are special cases of a more general class of systems referred to
as s-out-of-j system. A system belonging to this class can be one of following two types:
(i) A system that fails with the failure of the s-th component, denoted by s-out-of-j:F
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system; (ii) A system that functions as long as at least s components work and is denoted
by s-out-of-j:G system, where 1 � s � j. Multicomponent systems have been found wide
applications in both industrial and military operations. For example, in a communica-
tions system with three transmitters, the average message load may be such that at least
two transmitters must be operational at all times otherwise critical messages may be lost.
Thus, the transmission subsystem functions as a 2-out-of-3:G system.
Suppose a multicomponent system which has j independent and identically distrib-

uted strength components and each component is exposed to a common random stress
is considered. The system works only when at least s out of j (1 � s � j) strengths
exceed the stress. This corresponds to an s-out-of-j:G system. Let X1; :::;Xj be the
strength variables from the cumulative distribution function (CDF) Fð�Þ and Z be the
common stress variable from the CDF Gð�Þ. Then, the reliability of a multicomponent
system is given by

Rs;j ¼ P at least s of the X1;X2; :::;Xjð Þ exceed Z
� �
¼
Xj
i¼s

j
i

� �ð1
�1

1� F zð Þ½ �i F zð Þ½ �j�idG zð Þ

The reliability in a multicomponent stress-strength model was initially studied by
Bhattacharyya and Johnson (1974). Since then, several authors used different classical
procedures to estimate the reliability in multicomponent stress-strength models (see, for
instance, Rao and Kantam (2010), Rao (2012a, 2012b, 2012c), and Rao et al. (2013,
2015) when the underlying distributions follow log-logistic, generalized exponential,
generalized inverted exponential, Rayleigh, Burr Type XII, and exponentiated Weibull
distributions. At recent past, Kizilaslan and Nadar (2015, 2018), Kizilaslan (2017, 2018),
and Dey, Mazucheli, and Anis (2017) considered estimation of reliability in multicom-
ponent stress-strength models under classical and Bayesian framework for Weibull,
bivariate Kumaraswamy, general class of inverse exponentiated distributions, and
Kumaraswamy distributions.
The main attempt of this article is to obtain estimates of Rs;j using classical and

Bayesian approaches when strength and stress variable are independent and follow
Chen distributions. We organize the rest of this article as follows. In Section 2, the sys-
tem model and associated reliability are discussed. In Section 3, we obtain the max-
imum likelihood estimates (MLEs) and also compute the Fisher information matrix.
Estimation of Rs;j is considered in Section 4 under the assumption that the common
shape parameter may be known or unknown. For the point estimation, we obtain the
MLE, uniformly minimum variance unbiased estimator (UMVUE), and Bayes estimator.
For the interval estimation, we construct the asymptotic confidence interval and the
highest posterior density (HPD) credible interval. We conduct a Monte Carlo simula-
tion study in Section 5 to compare the proposed estimates of Rs;j. A real data set ana-
lysis is presented in Section 6. Finally, we conclude the article in Section 7.

2. Model description and reliability of the system

Chen (2000) proposed a new two parameter lifetime distribution with bathtub shaped
or increasing failure rate function. Its probability density function (PDF) is given by
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f x; a; bð Þ ¼ abxb�1 exp a 1� ex
b

� �
þ xb

� �
; x>0

and the corresponding CDF is

F x; a; bð Þ ¼ 1� exp a 1� ex
b

� �� �
; x>0 (1)

where a>0 and b>0 are shape parameters. If b<1, the hazard function of this distribu-
tion has a bathtub shape, and has an increasing failure rate function, if b � 1. Note
that, if a¼ 1, Equation (1) becomes an exponential power distribution. One may refer
to Wu (2008), Rastogi, Tripathi, and Wu (2012), Ahmed (2014), Kayal et al. (2017) and
the references cited there for some recent work done on the Chen distribution.
Stress-strength models have also been considered when a system consists of several

components. Bhattacharyya and Johnson (1974) developed the multicomponent stress-
strength model consisting of j components which functions when s (1 � s � j) or more
of the components work simultaneously with a common random stress. This model cor-
responds to the s-out-of-j:G system and the reliability of this system can be written as
PðXj�sþ1:j>ZÞ, where X1; :::;Xj are the strengths of the components from the CDF
Fðx; a; bÞ and Z is the common random stress from the CDF Fðz; g; bÞ. Furthermore,
Xj�sþ1:j is the ðj�sþ 1Þ-th order statistic of ðX1; :::;XjÞ. In this manner, the reliability of
a multicomponent stress-strength model is given by

Rs;j ¼ P at least sof the X1; :::;Xjð Þexceed Z
� �

¼
Xj
i¼s

j
i

� �ð1
�1

1�F z; a; bð Þð Þi F z; a;bð Þð Þj�idF z; g; bð Þ

This system reliability was considered by Jae and Eun (1981) when both stress and
strength follow a Weibull distribution with unknown scale parameters and known shape
parameter. For some more literature on multicomponent stress-strength models, see
Hanagal (1999, 2003) and Eryilmaz (2008, 2010).
Assume that X1;X2; :::;Xj are independent random variables from Chen distribution

with parameters ða; bÞ, and Z is a random variable also from Chen distribution with
parameters ðg;bÞ. For our model, Rs;j can be written as

Rs;j ¼ gb
Xj
i¼s

j
i

� �ð1
0
zb�1 exp 1� ez

b
� �

aiþ gð Þ þ zb
h i

1� exp a 1� ez
b

� �� �j�i
dz

h

¼ g
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk

ð1
1

exp a iþ kð Þ þ g
� �

1� tð Þ� �
dt

¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk g

a iþ kð Þ þ g
(2)

where t ¼ ez
b
.
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3. Likelihood inference and information matrix

Suppose that n items are put into a life testing experiment and the observed data are
Xi1;Xi2; :::;Xij and Zi, i ¼ 1; 2; :::; n. The likelihood equation can then be written as

L a; g; b; x; zð Þ ¼ anjgnbn jþ1ð ÞYn
i¼1

Yj
k¼1

xb�1ik exp a 1� ex
b
ik

� �
þ xbik

h in o
Yn
i¼1

zb�1i exp g 1� ez
b
i

� �
þ zbi

h in o
The log-likelihood function is given by

l a; g; b; x; zð Þ ¼ nj ln aþ n ln gþ n jþ 1ð Þ ln bþ b�1ð Þ
Xn
i¼1

Xj
k¼1

ln xik þ ln zi

0
@

1
A

þ
Xn
i¼1

Xj
k¼1

xbik þ zbi

0
@

1
A�aVb�gWb

where Vb ¼ �
Pn

i¼1
Pj

k¼1ð1� ex
b
ikÞ and Wb ¼ �

Pn
i¼1ð1� ez

b
i Þ. The MLEs of a and g

can then be obtained as
â ¼ nj

Vb̂

and ĝ ¼ n
Wb̂

;

where b̂ is the MLE of b which can be obtained by solving the following non linear
equation

n jþ 1ð Þ
b̂

þ
Xn
i¼1

Xj
k¼1

ln xik þ ln zi

0
@

1
AþXn

i¼1

Xj
k¼1

xb̂ik ln xik þ zb̂i ln zi

0
@

1
A

�
Xn
i¼1

â
Xj
k¼1

ex
b̂
ikxb̂ik ln xik þ ĝez

b̂
i zb̂i ln zi

0
@

1
A ¼ 0

We can solve the above equation by using the Newton-Raphson method and then

obtain b̂.
The Fisher information matrix of h ¼ ða; g; bÞ can be written as

I hð Þ ¼ �
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5:

The elements of the matrix are obtained as

a11 ¼ E
@2l
@a2

� �
¼ � nj

a2
;

a12 ¼ a21 ¼ E
@2l
@a@g

� �
¼ 0;

a13 ¼ a31 ¼ E
@2l
@a@b

� �
¼ � nja

b
q1 að Þ;

a22 ¼ E
@2l
@g2

� �
¼ � n

g2
;

a23 ¼ a32 ¼ E
@2l
@g@b

� �
¼ � ng

b
q1 gð Þ;

a33 ¼ E
@2l

@b2

 !
¼ � n jþ 1ð Þ

b2
þ nj q2 að Þ�q3 að Þð Þ þ n q2 gð Þ�q3 gð Þð Þ
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where q1ðcÞ ¼
Ð1
0 ð1þ uÞ ln ð1þ uÞ ln ð ln ð1þuÞÞe�cu du; q2ðcÞ ¼ c

b2
Ð1
0 ln ð1þ uÞ

½ln ð ln ð1þ uÞÞ�2e�cu du, and q3ðcÞ ¼ c2

b2
Ð1
0 ð1þ uÞ ln ð1þ uÞ½ln ð ln ð1þ uÞÞ�2 ½1þ

ln ð1 þuÞ�e�cu du.

4. Estimation of Rs;j

In this section, we will study the estimation of Rs;j when b may be unknown or known.

4.1. b is unknown

In this section we derive the MLE and the Bayes estimator of Rs;j under the assumption
that the parameter b is unknown.

4.1.1. MLE of Rs;j

By invariance property of the MLE, we can obtain the MLE, R̂s;j, of Rs;j by substituting

the MLEs of ða; g; bÞ obtained in Section 3 into Equation (2). We next observe that R̂s;j

is asymptotically normal with mean Rs;j and asymptotic variance

Var R̂s;j

� 	
¼ @Rs;j

@a

� �2

I�111 þ
@Rs;j

@g

� �2

I�122 þ 2
@Rs;j

@a

� �
@Rs;j

@g

� �
I�112 (3)

where I�1ij is the (i, j)-th entry of the inverse of the Fisher information matrix, and

@Rs;j

@a
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þkþ1 g iþ kð Þ

gþ a iþ kð Þ� �2
and

@Rs;j

@g
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk a iþ kð Þ

gþ a iþ kð Þ� �2
Therefore, the 100ð1�pÞ% confidence interval of Rs;j is given by

R̂s;j�qp=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar R̂s;j

� 	r
; R̂s;j þ qp=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar R̂s;j

� 	r !

where qp=2 is the upper p=2 quantile of the standard normal distribution and V̂arðR̂s;jÞ
is the value of VarðR̂s;jÞ computed at MLEs of parameters.

4.1.2. Bayesian estimation of Rs;j

In this section, we consider estimation of a, g and b using the Bayes approach and then
derive the Bayes estimator of Rs;j. We assume that a, g, and b are independent random var-
iables and their prior distributions are gamma with hyperparameters (ci, di), i¼ 1, 2, 3,
respectively. The density function of a gamma distribution, denoted as Gammaðci; diÞ, is
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g xð Þ ¼ dcii
C cið Þ x

ci�1e�xdi ; x>0

where ci>0 and di>0, i¼ 1, 2, 3. The joint posterior density function of a, g, and b can
be written as

p a; g; bjx; zð Þ ¼ D�1anjþc1�1gnþc2�1bn jþ1ð Þþc3�1
Yn
i¼1

Yj
k¼1

xb�1ik

8<
:

9=
;

Yn
i¼1

zb�1i

( )

exp
Xn
i¼1

Xj
k¼1

xbik þ
Xn
i¼1

zbi � aVb � gWb � ad1 þ gd2 þ bd3ð Þ
2
4

3
5

where D is the normalizing constant. The Bayes estimator of Rs;j under squared error
loss is obtained as

~R
B
s;j ¼

ð1
0

ð1
0

ð1
0
Rs;jp a; g;bjx; zð Þ dadgdb (4)

Since the triple integral given in Equation (4) cannot be solve analytically, we can
apply some suitable numerical methods to approximate it. We will apply the Lindley
approximation method which was proposed by Lindley (1980) and the Metropolis-
Hastings (MH) algorithm proposed by Metropolis et al. (1953) and Hastings (1970) to

compute the Bayes estimate ~R
B
s;j.

4.1.3. Lindley approximation method

Here we compute the Bayes estimate of unknown parametric function Rs;j by
Lindley approximation method. Based on Lindley approximation, the approximate
Bayes estimate of a parametric function hða; g;bÞ under squared error loss is given
by

~h
L ¼ hþ h1p1 þ h2p2 þ h3p3 þ p4 þ p5ð Þ

þ0:5 r11l111 þ 2r12l121 þ 2r13l131 þ 2r23l231 þ r22l221 þ r33l331ð Þ h1r11 þ h2r12 þ h3r13ð Þ½

þ r11l112 þ 2r12l122 þ 2r13l132 þ 2r23l232 þ r22l222 þ r33l332ð Þ h1r21 þ h2r22 þ h3r23ð Þ

þ r11l113 þ 2r12l123 þ 2r13l133 þ 2r23l233 þ r22l223 þ r33l333ð Þ h1r31 þ h2r32 þ h3r33ð Þ�
(5)

where pi ¼ q1ri1 þ q2ri2 þ q3ri3, i¼ 1, 2, 3, p4 ¼ h12r12 þ h13r13 þ h23r23,
p5 ¼ 0:5ðh11r11 þ h22r22 þ h33r33Þ, and rij is the (i, j)-th entry of the inverse of the
observed information matrix. Furthermore, q1 ¼ c1�1

a �d1; q2 ¼ c2�1
g �d2; q3 ¼ c3�1

b �d3,
and rik is the element of the matrix ½�lik��1; i; k ¼ 1; 2; 3. Now, substituting h ¼ Rs;j, all
other quantities in Equation (5) have the following representations:
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~h
L ¼ ~R

L
s;j; h ¼ Rs;j; h1 ¼

@Rs;j

@a
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þkþ1 g iþ kð Þ

gþ a iþ kð Þ� �2 ;
h2 ¼

@Rs;j

@g
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk a iþ kð Þ

gþ a iþ kð Þ� �2 ; h3 ¼
@Rs;j

@b
¼ 0;

h11 ¼
@2Rs;j

@a2
¼ 2
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk g iþ kð Þ2

gþ a iþ kð Þ� �3 ;
h12 ¼ h21 ¼

@2Rs;j

@a@g
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þkþ1 a iþ kð Þ�g

� �
iþ kð Þ

gþ a iþ kð Þ� �3 ;

h22 ¼
@2Rs;j

@g2
¼ 2
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þkþ1 a iþ kð Þ

gþ a iþ kð Þ� �3 ;
h13 ¼ h31 ¼

@2Rs;j

@a@b
¼ 0; h23 ¼ h32 ¼

@2Rs;j

@g@b
¼ 0; h33 ¼

@2Rs;j

@b2
¼ 0;

l11 ¼ � nj
a2

; l13 ¼ l31 ¼ �
Xn
i¼1

Xj
k¼1

ex
b
ikxbik ln xik; l22 ¼ � n

g2
;

l23 ¼ l32 ¼ �
Xn
i¼1

ez
b
i zbi ln zi; l12 ¼ l21 ¼ 0;

l33 ¼ � n jþ 1ð Þ
b2

þ
Xn
i¼1

Xj
k¼1

xbik ln xikð Þ2 þ zbi ln zið Þ2
0
@

1
A

�
Xn
i¼1

Xj
k¼1

aex
b
ikxbik ln xikð Þ2 1þ xbik

� 	
þ gez

b
i zbi ln zið Þ2 1þ zbi

� 	0
@

1
A;

l111 ¼ 2nj
a3

; l121 ¼ l122 ¼ l123 ¼ l211 ¼ l212 ¼ l213 ¼ l221 ¼ l223 ¼ l112 ¼ l113 ¼ 0;

l222 ¼ 2n
g3

; l133 ¼ l331 ¼ �
Xn
i¼1

Xj
k¼1

ex
b
ikxbik ln xikð Þ2 1þ xbik

� 	
;

l233 ¼ l332 ¼ �
Xn
i¼1

ez
b
i zbi ln zið Þ2 1þ zbi

� 	
;

l333 ¼ 2n jþ 1ð Þ
b3

þ
Xn
i¼1

Xj
k¼1

xbik ln xikð Þ3 þ zbi ln zið Þ3
0
@

1
Aþ Vb þWb

where

Vb ¼ �
Xn
i¼1

Xj
k¼1

ex
b
ikxbik ln xbik

� 	3
xbik þ xbik 1þ xbik

� 	
þ 1þ xbik

� 	n o

and

Wb ¼ �
Xn
i¼1

ez
b
i zbi ln zbi

� 	3
zbi þ zbi 1þ zbi

� 	
þ 1þ zbi

� 	n o

All the quantities of unknown ða; g; bÞ are evaluated at the MLEs ðâ; ĝ; b̂Þ.
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4.1.4. MH algorithm

The MH algorithm is a general algorithm for Bayesian computations. Here we compute
Bayes estimate of the reliability under squared error loss using this algorithm. We
observe that the marginal posterior distributions of a and g are gamma distributions
which can be used to generate respective posterior samples. However, the marginal pos-
terior distribution of b cannot be obtained in a known form, and thus, it is relatively
difficult to generate samples from this distribution. Here we approximate this marginal
posterior density by a normal proposal distribution. The following algorithm is used to

generate samples to obtain the Bayes estimate ~R
MH
s;j of Rs;j.

Step 1. Choose an initial guess of ða; g;bÞ, say ða0; g0; b0Þ.
Step 2. Generate b0 from Nðbi�1; r2Þ at the i-th iterative stage. The variance term r2 can be

obtained from the variance-covariance matrix which is the inverse of the Fisher infor-
mation matrix.

Step 3. Generate a0 from Gammaðnjþ c1; d1 þ vb0 Þ and g0 from Gammaðnþ c2; d2 þ wb0 Þ,
respectively.

Step 4. Compute r ¼ minf1; pða0;g0;b0 jx;zÞ
pðai�1;gi�1;bi�1jx;zÞg.

Step 5. Generate a random number u from Uð0; 1Þ:
Step 6. If u � r, then ai  a0; gi  g0, and bi  b0.
Step 7. Compute Ri

s;j at ðai; gi; biÞ.
Step 8. Repeat Steps 2-7 B times and obtain the posterior sample Ri

s;j; i ¼ 1; 2; :::;B.

We use this MH sample to compute the Bayes estimate and to construct the HPD
interval of Rs;j. The Rs;j can be estimated as

~R
MH
s;j ¼

1
B� B0

XB
i¼B0þ1

Ri
s;j

where B0 is the number in burn-in period. We can also employ the method proposed
by Chen and Shao (1999) to compute the HPD interval of Rs;j.

4.2. b is known

In this section, we obtain the MLE, UMVUE, and Bayes estimator of the reliability Rs;j

under the assumption that parameter b is known, say b1. Note that Rs;j does not depend
on b, and hence, Rs;j remains the same as in b unknown case.

4.2.1. MLE of Rs;j

When b is known and say b ¼ b1, the likelihood function of ða; gÞ is given by

L a; g; x; z;b1ð Þ ¼ H x; z; b1ð Þanjgne� a~.þg~1ð Þ

where Hðx; z; b1Þ ¼ bnðjþ1Þ1 exp ½Pn
i¼1ð
Pj

k¼1 x
b1
ik þ zb1i Þ�

Qn
i¼1
Qj

k¼1 x
b1�1
ik

Qn
i¼1 z

b1�1
i ; ~. ¼

�Pn
i¼1
Pj

k¼1ð1� ex
b1
ik Þ and ~1 ¼ �Pn

i¼1ð1� ez
b1
i Þ. The corresponding log-likelihood

function can be written as
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l a; g; x; z; b1ð Þ ¼ lnH x; z; b1ð Þ þ nj ln aþ n ln g�a~.�g~1
Subsequently, the MLEs of a and g can be obtained as

â ¼ nj
~.

and ĝ ¼ n
~1
:

Using invariance property of MLE, one can obtain the MLE R̂s;j of Rs;j by substituting

â and ĝ into Equation (2). Moreover, the asymptotic distribution of R̂s;j is normal with
mean Rs;j and variance

Var R̂s;j

� 	
¼ @Rs;j

@a

� �2
a2

nj
þ @Rs;j

@g

� �2 g2

n

where

@Rs;j

@a
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þkþ1 g iþ kð Þ

gþ a iþ kð Þ� �2
and

@Rs;j

@g
¼
Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk a iþ kð Þ

gþ a iþ kð Þ� �2
The 100ð1�pÞ% confidence interval of Rs;j is now given by

R̂s;j�qp=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar R̂s;j

� 	r
; R̂s;j þ qp=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar R̂s;j

� 	r !

where qp=2 is the upper p=2 quantile of the standard normal distribution and V̂arðR̂s;jÞ
is value of VarðR̂s;jÞ computed at associated MLEs.

4.2.2. UMVUE of Rs;j

In this section, we obtain the UMVUE of stress-strength reliability Rs;j. Using the linearity
property of the UMVUE, it suffices to find the UMVUE of parametric function
�ða; gÞ ¼ g

aðiþkÞþg. Note that ð~.;~1Þ is a complete sufficient statistic for ða; gÞ. It is also easy

to show that the densities of ~. and ~1 are gamma distributions with parameters ðnj; aÞ and
ðn; gÞ, respectively. To derive the UMVUE of Rs;j, we need the following lemma:

Lemma 1. Define

W ~.�;~1�ð Þ ¼ 1; ~.�> iþ kð Þ~1�
0; otherwise;

�

where ~.� ¼ eX
b
11�1 and ~1� ¼ eZ

b
1�1. Then, Wð~.�;~1�Þ is an unbiased estimator of �ða; gÞ.

Proof. Notice that ~.� and ~1� are independent and follow exponential distributions
with parameters a and g, respectively. Then, we can obtain that
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E W ~.�;~1�ð Þð Þ ¼ P ~.�> iþ kð Þ~1�
� �

¼ ag
ð1
0

ð .�
iþk

0
e�a.

�
e�g1

�
d1�d.�

¼ a
ð1
0
e�a.

�
1� e�

g.�
iþk

� �
d.�

¼ a
1
a
� 1

aþ g= iþ kð Þ
� 

¼ g

a iþ kð Þ þ g
:

This completes the proof of the lemma.

Now, the UMVUE of �ða; gÞ, say �̂ða; gÞ, can be obtained by using the
Lehmann–Scheff�e Theorem and it is given by

�̂ a; gð Þ ¼ E W ~.�;~1�ð Þj~. ¼ .;~1 ¼ 1
� �

¼ P ~.�> iþ kð Þ~1�j~. ¼ .;~1 ¼ 1
� �

¼
ð
U

ð
f �~.�j~.¼. .�j.ð Þf �~1�j~1¼1 1�j1ð Þ d.�d1�;

(6)

where U ¼ fð.�; 1�Þ; 0<.�<.; 0<1�<1; .�>ðiþ kÞ1�g. The double integral in Equation
(6) can be discussed in three cases, That is, Case (i) 1ðiþ kÞ<., Case (ii) 1ðiþ kÞ>.,
and Case (iii) 1ðiþ kÞ ¼ .. Using the result of Basirat, Baratpour, and Ahmadi (2015)
(see also, Kizilaslan (2017)), we have
Case (i):

�̂ a; gð Þ ¼ n�1ð Þ nj�1ð Þ
.1

ð1
0

ð.
1� iþkð Þ

1� .�

.

� �nj�2
1� 1�

1

� �n�2
d.�d1�

¼ n�1
1

ð1
0

1� 1�

1

� �n�2
1� 1� iþ kð Þ

.

" #nj�1
d1�

¼
Xnj�1
r¼0
�1ð Þr iþ kð Þ1

.

" #r nj�1
r

 !

nþ r�1
r

 ! :

Case (ii):

�̂ a; gð Þ ¼ n�1ð Þ nj�1ð Þ
.1

ð.
0

ð .�
iþk

0
1� .�

.

� �nj�2
1� 1�

1

� �n�2
d1�d.�

¼ nj�1
.

ð.
0

1� .�

.

� �nj�2
1� 1� .�

iþ kð Þ1
� �n�1

" #
d.�

¼ 1�
Xn�1
r¼0
�1ð Þr .

1 iþ kð Þ
� r n�1

r

 !

njþ r�1
r

 ! :
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Case (iii):

�̂ a; gð Þ ¼ n�1ð Þ nj�1ð Þ
.1

ð1
0

ð.
1� iþkð Þ

1� .�

.

� �nj�2
1� 1�

1

� �n�2
d.�d1�

¼ n�1
1

ð1
0

1� 1�

1

� �n�2
1� 1� iþ kð Þ

.

" #nj�1
d1�

¼ n�1
1

ð1
0

1� 1�

1

� �njþn�3
d1�

¼ n�1
njþ n� 2

:

Hence, the UMVUE of Rs;j is now given by

R̂
U
s;j ¼

Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk �̂ a; gð Þ

4.2.3. Bayesian estimates of Rs;j

Assume that a and g are independent and have gamma prior distributions with parame-
ters (c1, d1) and (c2, d2), respectively. The joint posterior distribution of a and g turns
out to be

p a; gjx; z; b1ð Þ
¼ d1 þ .ð Þnjþc1 d2 þ 1ð Þnþc2

C njþ c1ð ÞC nþ c2ð Þ anjþc1�1gnþc2�1 exp � a d1 þ .ð Þ þ g d2 þ 1ð Þ� �� �
; a>0; g>0

The Bayes estimator of Rs;j under the squared error loss function is then obtained as

~R
B
s;j ¼

Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk

ð1
0

ð1
0

g

a iþ kð Þ þ g
p a; gjx; z; b1ð Þ da dg (7)

Now, we consider the transformation b ¼ g
aðiþkÞþg and b� ¼ aðiþ kÞ þ g. Then,

0<b<1; 0<b�<1; a ¼ b�ð1�bÞ
iþk , and g ¼ bb�. The Jacobian of this transformation is � b�

iþk.
After some simple algebra, Equation (7) can be rewritten as

~R
B
s;j ¼

Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� �
�1ð Þk 1�uð Þnþc2

B njþ c1; nþ c2ð Þ
ð1
0
bnþc2 1�bð Þnjþc1�1 1�buð Þ�t db (8)

where u ¼ 1� ðd2þ1ÞðiþkÞd1þ. and t ¼ njþ c1 þ c2 þ n. Following Gradshteyn and Ryzhik

(1994), we rewrite Equation (8) as

~R
B
s;j ¼

Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� � �1ð Þk 1�uð Þnþc2 nþ c2ð Þ
t 2F1 t; nþ c2 þ 1; t þ 1; uð Þ; juj<1;

Xj
i¼s

j
i

� �Xj�i
k¼0

j�i
k

� � �1ð Þk nþ c2ð Þ
1�uð Þnjþc1 t 2F1 t; njþ c1; t þ 1;

u
u� 1

� �
; u<�1

8>>>>><
>>>>>:

where 2F1ð#; i; j; uÞ ¼ 1
Bði;j�iÞ

Ð 1
0 y

i�1ð1�yÞj�i�1ð1�uyÞ�#dy.
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Next, we compute the Bayes estimates of stress-strength reliability using Lindley
approximation method and MH procedure. Although, in this particular case we are able
to obtain the Bayes estimator in an explicit form, still it is worth computing such esti-
mates using some approximation methods as well. It helps in comparing exact estimates
with approximate ones to judge how efficient the approximate procedures with the
exact one in terms of some optimal criteria such as estimated risk.

4.2.4. Lindley approximation

In this case, Bayes estimator of a parametric function hða; gÞ turns out to be

~h
L ¼ hþ 0:5

X2
i¼1

X2
k¼1

hikrik þ p�30r11 h1r11 þ h2r12ð Þ þ p�21H12 þ p�21H21

"

þp�03r22 h2r22 þ h1r21ð Þ
#

where Hik ¼ 3hirii þ rik þ hkriiðrii þ 2r2ikÞ. Furthermore, let

p� / njþ c1�1ð Þ ln aþ nþ c2�1ð Þ ln g�a d1 þ .ð Þ�g d2 þ 1ð Þ:
That is, p� is proportional to the posterior density of ða; gÞ. The posterior modes of a
and g can be obtained from p� and are given, respectively, by

~aL ¼ njþ c1�1
d1 þ .

and ~gL ¼
nþ c2�1
d2 þ 1

:

Moreover, p�ij ¼ @iþjp�
@ai@gj ja¼~aL;g¼~gL ; i; j ¼ 0; 1; 2; 3 and iþ j ¼ 3. Thus,

p�30 ¼
2 njþ c1�1ð Þ

~a3L
;

p�12 ¼ 0 ¼ p�21;

p�03 ¼
2 nþ c2�1ð Þ

~g3L

Finally, we take h ¼ Rs;j in above calculations and then obtain the Bayes estimate ~R
L
s;j of

Rs;j. Note that all computations are performed at ð~aL; ~gLÞ.

4.2.5. MH algorithm

Here we use the MH algorithm to compute the Bayes estimate of Rs;j. Observe that the
marginal posterior distributions of a and g follows gamma distributions. We can use
the following algorithm to generate samples.

Step 1. Choose an initial guess of ða; gÞ, say ða0; g0Þ.
Step 2. Generate a0 from Gammaðnþ c1; d1 þ .Þ and g0 from Gammaðnþ c2; d2 þ 1Þ.
Step 3. Compute r ¼ minf1; pða0;g0;b1jx;zÞ

pðai�1;gi�1;b1jx;zÞg.
Step 4. Generate u from U(0, 1).
Step 5. If u � r, then ai  a0 and gi  g0.
Step 6. Compute Ri

s;j at ðai; giÞ.
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Step 7. Repeat Steps 2-6 B times and obtain the posterior sample Ri
s;j; i ¼ 1; 2; :::;B.

This sample is then used to compute the Bayes estimate and to construct the HPD
credible interval for Rs;j. Subsequently, Rs;j can be estimated as

~R
MH
s;j ¼

1
B� B0

XB
i¼B0þ1

Ri
s;j;

where B0 is the number in burn-in period. Further, we can construct the 100ð1�pÞ%
HPD credible interval of Rs;j using the method of Chen and Shao (1999).

5. Simulation study

In this section, we study the performance of different estimates of Rs;j using Monte
Carlo simulations. We generate samples from Chen distribution for different sample
sizes. The performances of point estimators are compared using the estimated risks
based on 4000 replications. Also, the performances of the confidence intervals and cor-
responding coverage probabilities are reported. The estimated risk in estimating h with

the estimator ĥ is given by

ER hð Þ ¼ 1
K

XK
i¼1

ĥi�h
� �2

:

First, we consider the case where all parameters ða; g; bÞ are unknown. We generate
the stress and strength samples for ða; g; bÞ ¼ ð1:5; 2; 0:5Þ; ð2:5; 1:5; 0:75Þ, and for differ-
ent sample sizes n ¼ 10; 15; 20; :::; 50. The corresponding true values of reliability in a
multicomponent stress-strength with the given combinations ðs; jÞ ¼ ð1; 4Þ are 0.8665
and 0.6516, and for ðs; kÞ ¼ ð3; 6Þ these values are 0.6646 and 0.4118, respectively. We
consider the following values of hyperparameters of the priors: ðc1; d1Þ ¼
ð3; 2Þ; ðc2; d2Þ ¼ ð8; 4Þ; ðc3; d3Þ ¼ ð4; 8Þ for the first set of true parameter values, and for
the second set of true parameter values, we take the values of hyperparameters as
ðc1; d1Þ ¼ ð5; 2Þ; ðc2; d2Þ ¼ ð6; 4Þ; ðc3; d3Þ ¼ ð3; 4Þ. The simulation results of MLEs,
Lindley estimates, MH estimates, and interval estimations of Rs;j are reported in Tables
1 and 2. All the results were computed over 4000 simulated samples.
In Table 1, for each sample size n and estimator, the first value represents the average

estimate of Rs;j and the second value represents the estimated risk for the corresponding
stress-strength reliability. These values are tabulated for various sample sizes. From
Table 1, we observe that, in general, better estimation results may be obtained with an
increase in the sample size. However, it is relatively difficult to observe in exact sense
that estimated risks decreases with sample size using numerical simulations. We observe
such behavior for both maximum likelihood and Bayes estimates. The Bayes estimates
of Rs;j under the squared error loss perform relatively better than the MLEs as far as the
estimated risks are concerned. Among the Bayes estimates, we observe that the esti-
mated risks of the Bayes estimates using Lindley approximation are generally smaller
than those using the MH algorithm. From tabulated values, we observe that the Bayes
estimates and their estimated risks marginally remain close to each other, as expected.
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In Table 2, we present the 95% asymptotic confidence intervals and HPD intervals
along with their coverage probabilities. From Table 2, it can be observed that average
lengths of HPD intervals are smaller than those of the asymptotic confidence intervals.
The coverage probabilities of both intervals are relatively satisfactory (see also,
Kizilaslan (2017)). We have also observed similar behavior of proposed point and inter-
val estimates for some other parameter values such as ða; g; bÞ ¼ ð0:5; 1; 0:5Þ using
Monte Carlo simulations. Results are not presented here for the sake of conciseness.
Next, we consider the case when b is known. We generate stress and strength sam-

ples for previously selected values of ða; gÞ and hyperparameters when b ¼ 0:25. The
simulation results are reported in Tables 3 and 4. All estimates are computed over 4000
simulated samples.
In Table 3, average estimates and estimated risks of MLEs, UMVUEs, exact Bayes

estimates, Lindley estimates, and MH estimates of Rs;j are presented when b ¼ 0:25.
From this table, we observe that the estimated risk decreases when sample size increase.
We further observe that MLEs and UMVUEs compete well with Bayes estimates.

Table 1. Average estimates & estimated risks of estimators of Rs;j when the parameter b
is unknown.
n R1;4 R̂s;j ~R

L
s;j

~R
MH
s;j R3;6 R̂s;j ~R

L
s;j

~R
MH
s;j

10 0.8665 0.8549 0.8682 0.8611 0.6646 0.6946 0.6907 0.6532
0.0052 0.0025 0.0025 0.0120 0.0036 0.0047

15 0.8757 0.8718 0.8616 0.6882 0.6869 0.6565
0.0033 0.0017 0.0019 0.0080 0.0025 0.0039

20 0.8545 0.8601 0.8597 0.6741 0.6721 0.6590
0.0026 0.0014 0.0016 0.0058 0.0024 0.0032

25 0.8556 0.8617 0.8607 0.6728 0.6710 0.6597
0.0021 0.0013 0.0014 0.0046 0.0023 0.0028

30 0.8564 0.8629 0.8627 0.6719 0.6729 0.6609
0.0018 0.0012 0.0013 0.0041 0.0023 0.0027

35 0.8580 0.8627 0.8624 0.6708 0.6717 0.6612
0.0015 0.0010 0.0011 0.0034 0.0021 0.0024

40 0.8705 0.8635 0.8631 0.6692 0.6677 0.6618
0.0014 0.0010 0.0010 0.0028 0.0019 0.0020

45 0.8587 0.8601 0.8640 0.6680 0.6671 0.6627
0.0011 0.0009 0.0009 0.0025 0.0017 0.0019

50 0.8598 0.8606 0.8656 0.6676 0.6662 0.6634
0.0010 0.0008 0.0008 0.0024 0.0017 0.0018

10 0.6516 0.6286 0.6398 0.6479 0.4118 0.4327 0.4314 0.3991
0.0131 0.0052 0.0061 0.0117 0.0032 0.0045

15 0.6327 0.6376 0.6477 0.4028 0.4014 0.4049
0.0084 0.0041 0.0048 0.0068 0.0027 0.0034

20 0.6329 0.6400 0.6489 0.4035 0.4021 0.4063
0.0062 0.0036 0.0040 0.0054 0.0027 0.0032

25 0.6361 0.6432 0.6462 0.4049 0.4033 0.4088
0.0051 0.0034 0.0036 0.0042 0.0025 0.0028

30 0.6374 0.6453 0.6475 0.4057 0.4037 0.4092
0.0043 0.0030 0.0032 0.0034 0.0022 0.0024

35 0.6419 0.6451 0.6567 0.4084 0.4052 0.4108
0.0037 0.0027 0.0028 0.0030 0.0021 0.0022

40 0.6454 0.6599 0.6559 0.4091 0.4077 0.4120
0.0032 0.0024 0.0025 0.0027 0.0020 0.0021

45 0.6554 0.6520 0.6537 0.4108 0.4113 0.4117
0.0029 0.0023 0.0023 0.0022 0.0017 0.0018

50 0.6507 0.6552 0.6543 0.4116 0.4112 0.4120
0.0025 0.0020 0.0020 0.0021 0.0017 0.0017
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However, Bayes estimates have an advantage over these two estimates in terms of esti-
mated risk. Results also indicate that MLEs perform marginally better than UMVUEs.
Further, the exact Bayes estimates are very close to the Bayes estimates which are
obtained by using Lindley approximation and MH methods. Besides, Lindley and MH
estimates deviate marginally from exact estimates and for large sample sizes, their esti-
mated risks tend to become close to each other.
Table 4 contains the average lengths of asymptotic confidence intervals and HPD

intervals along with their coverage probabilities. It is observed that, in general, the aver-
age length of HPD intervals are shorter than asymptotic confidence intervals. We
observe that the lengths of both intervals decrease when sample size increases. The
coverage probabilities of these intervals are relatively satisfactory (see also, Kizilaslan
(2017)). We also computed these estimates using some other arbitrary combinations of
ða; gÞ such as (1.5,2), (2.5,1.5), and (0.5,1) when the parameter b may be 0.85, 0.15, or
0.5. We draw quite similar conclusions from these tables as well. However, these results
are not presented here for the sake of brevity.

6. Data analysis

We consider a data set which was initially published in Musa (1979) and discussed in
Nikora and Lyu (1996). This data set is also available at http://www.cse.cuhk.edu.hk/
�lyu/book/reliability/DATA/CH7/SYS2.DAT and represents failure times of different
subjects under a study. Here we consider s¼ 3 and j¼ 6 which suggests that it is a 3-
out-of-6:G system. Let Z1 denotes the 17-th failure time and X1j; j ¼ 1; 2; :::; 6, be the
times to failure of observations numbered 18 to 23. Similarly, let Z2 be the failure time
of the 24-th observation and X2j; j ¼ 1; 2; :::; 6, be the failure times of observations lying
between 25 to 30. When we carry on this data process up to 51-st failure, then we get
n¼ 5. The data (X, Z) are as follows:

Table 2. Average lengths (ALs) and coverage probabilities (CPs) of the interval estimations for Rs;j
when b is unknown.

Asymptotic HPD Asymptotic HPD

n R1;4 AL CP AL CP R3;6 AL CP AL CP

10 0.8665 0.2668 0.87 0.1563 0.89 0.6646 0.4032 0.90 0.2261 0.90
15 0.2233 0.90 0.1354 0.88 0.3357 0.91 0.1969 0.88
20 0.1963 0.91 0.1215 0.87 0.2943 0.93 0.1777 0.87
25 0.1767 0.92 0.1114 0.86 0.2646 0.93 0.1630 0.87
30 0.1613 0.92 0.1028 0.85 0.2424 0.92 0.1521 0.85
35 0.1494 0.92 0.0962 0.86 0.2252 0.94 0.1425 0.85
40 0.1403 0.93 0.0910 0.84 0.2114 0.94 0.1349 0.86
45 0.1326 0.93 0.0864 0.85 0.1994 0.94 0.1281 0.86
50 0.1258 0.93 0.0823 0.85 0.1894 0.94 0.1225 0.84
10 0.6516 0.4208 0.90 0.2527 0.89 0.4118 0.3881 0.92 0.2238 0.90
15 0.3489 0.92 0.2174 0.87 0.3183 0.94 0.1927 0.88
20 0.3051 0.93 0.1938 0.87 0.2767 0.94 0.1724 0.87
25 0.2740 0.93 0.1767 0.86 0.2471 0.94 0.1567 0.85
30 0.2508 0.93 0.1635 0.84 0.2263 0.94 0.1454 0.86
35 0.2332 0.94 0.1534 0.84 0.2099 0.94 0.1361 0.84
40 0.2182 0.94 0.1442 0.84 0.1966 0.94 0.1283 0.84
45 0.2060 0.94 0.1368 0.84 0.1850 0.95 0.1216 0.84
50 0.1956 0.94 0.1305 0.84 0.1759 0.94 0.1163 0.83
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Table 3. Average estimates and estimated risks of estimators of Rs;j when b ¼ 0:25.

n R1;4 R̂s;j R̂
U
s;j

~R
B
s;j

~R
L
s;j

~R
MH
s;j R3;6 R̂s;j R̂

U
s;j

~R
B
s;j

~R
L
s;j

~R
MH
s;j

10 0.8665 0.8779 0.8787 0.8576 0.8572 0.8575 0.6646 0.6955 0.6739 0.6774 0.6745 0.6777
0.0019 0.0022 0.0007 0.0007 0.0007 0.0029 0.0031 0.0008 0.0008 0.0008

15 0.8706 0.8702 0.8596 0.8594 0.8618 0.6802 0.6750 0.6706 0.6716 0.6727
0.0014 0.0016 0.0007 0.0007 0.0007 0.0019 0.0020 0.0008 0.0008 0.0008

20 0.8717 0.8733 0.8636 0.8634 0.8636 0.6603 0.6557 0.6591 0.6590 0.6601
0.0012 0.0013 0.0006 0.0006 0.0007 0.0017 0.0016 0.0008 0.0008 0.0008

25 0.8685 0.8724 0.8633 0.8642 0.8640 0.6604 0.6597 0.6691 0.6696 0.6701
0.0010 0.0010 0.0006 0.0006 0.0006 0.0013 0.0013 0.0008 0.0007 0.0008

30 0.8702 0.8708 0.8659 0.8658 0.8666 0.6703 0.6582 0.6578 0.6645 0.6573
0.0010 0.0010 0.0006 0.0006 0.0006 0.0012 0.0012 0.0007 0.0007 0.0008

35 0.8682 0.8701 0.8650 0.8649 0.8655 0.6626 0.6609 0.6687 0.6696 0.6705
0.0008 0.0009 0.0006 0.0006 0.0006 0.0012 0.0012 0.0006 0.0006 0.0006

40 0.8699 0.8710 0.8622 0.8612 0.8618 0.6590 0.6576 0.6597 0.6609 0.6599
0.0008 0.0008 0.0006 0.0006 0.0006 0.0011 0.0011 0.0005 0.0006 0.0005

45 0.8626 0.8606 0.8653 0.8634 0.8649 0.6681 0.6669 0.6635 0.6639 0.6638
0.0007 0.0007 0.0006 0.0006 0.0006 0.0011 0.0010 0.0005 0.0005 0.0005

50 0.8650 0.8639 0.8652 0.8652 0.8657 0.6680 0.6593 0.6629 0.6621 0.6631
0.0007 0.0007 0.0006 0.0005 0.0005 0.0010 0.0010 0.0004 0.0004 0.0004

10 0.6726 0.6569 0.6581 0.6660 0.6641 0.6436 0.4118 0.3966 0.3945 0.4047 0.4041 0.4010
0.0023 0.0024 0.0008 0.0008 0.0008 0.0022 0.0023 0.0008 0.0008 0.0008

15 0.6484 0.6821 0.6672 0.6648 0.6637 0.4284 0.4167 0.4198 0.4187 0.4064
0.0017 0.0017 0.0008 0.0008 0.0008 0.0016 0.0016 0.0008 0.0008 0.0008

20 0.6615 0.6634 0.6682 0.6685 0.6669 0.4267 0.4173 0.4189 0.4179 0.4193
0.0014 0.0014 0.0008 0.0008 0.0008 0.0013 0.0013 0.0008 0.0008 0.0008

25 0.6635 0.6642 0.6692 0.6682 0.6689 0.4156 0.4082 0.4182 0.4169 0.4188
0.0012 0.0012 0.0008 0.0008 0.0008 0.0010 0.0010 0.0008 0.0006 0.0006

30 0.6669 0.6672 0.6693 0.6997 0.6691 0.4170 0.4118 0.4144 0.4136 0.4120
0.0011 0.0011 0.0007 0.0007 0.0008 0.0011 0.0010 0.0006 0.0006 0.0006

35 0.6687 0.6677 0.6703 0.6712 0.6705 0.4274 0.4222 0.4337 0.4236 0.4212
0.0010 0.0010 0.0007 0.0007 0.0007 0.0010 0.0010 0.0004 0.0005 0.0005

40 0.6689 0.6678 0.6702 0.6702 0.6718 0.4316 0.4270 0.4248 0.4215 0.4265
0.0010 0.0010 0.0007 0.0006 0.0006 0.0010 0.0009 0.0004 0.0004 0.0004

45 0.6694 0.6686 0.6709 0.6722 0.6727 0.4270 0.4230 0.4201 0.4226 0.4208
0.0009 0.0010 0.0006 0.0006 0.0006 0.0009 0.0009 0.0003 0.0004 0.0003

50 0.6697 0.6684 0.6726 0.6729 0.6629 0.4354 0.4377 0.4093 0.4105 0.4129
0.0010 0.0010 0.0005 0.0004 0.0004 0.0009 0.0008 0.0003 0.0003 0.0003

Table 4. Average lengths (ALs) and coverage probabilities (CPs) of the interval estimations
when b ¼ 0:25.

Asymptotic HPD Asymptotic HPD

n R1;4 AL CP AL CP R3;6 AL CP AL CP

10 0.8665 0.2547 0.86 0.1507 0.88 0.6646 0.4161 0.91 0.2289 0.89
15 0.2144 0.91 0.1312 0.91 0.3426 0.92 0.1999 0.91
20 0.1891 0.89 0.1182 0.86 0.2977 0.94 0.1795 0.89
25 0.1715 0.97 0.1087 0.90 0.2673 0.94 0.1648 0.91
30 0.1570 0.92 0.1008 0.91 0.2441 0.92 0.1531 0.89
35 0.1469 0.93 0.0950 0.89 0.2262 0.91 0.1436 0.89
40 0.1377 0.95 0.0900 0.89 0.2120 0.95 0.1357 0.91
45 0.1301 0.96 0.0852 0.89 0.2000 0.94 0.1291 0.88
50 0.1239 0.92 0.0814 0.84 0.1899 0.96 0.1233 0.88
10 0.6516 0.4280 0.93 0.2464 0.92 0.4118 0.3911 0.97 0.2183 0.91
15 0.3513 0.97 0.2123 0.94 0.3186 0.96 0.1886 0.91
20 0.3052 0.94 0.1901 0.90 0.2763 0.91 0.1691 0.88
25 0.2735 0.94 0.1733 0.90 0.2486 0.94 0.1554 0.84
30 0.2498 0.97 0.1603 0.89 0.2290 0.98 0.1451 0.89
35 0.2314 0.96 0.1498 0.89 0.2116 0.98 0.1355 0.97
40 0.2168 0.96 0.1416 0.89 0.1985 0.96 0.1281 0.94
45 0.2045 0.95 0.1342 0.89 0.1883 0.96 0.1223 0.95
50 0.1940 0.97 0.1277 0.89 0.1783 0.93 0.1166 0.91
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X ¼

277 437 437 596 757 2230
277 363 405 522 535 613
213 298 821 1300 1601 1620
5 149 618 1034 2441 2640
437 565 714 927 1119 4462

2
66664

3
77775 and Z ¼

135
340
277
874
460

2
66664

3
77775:

We first verify that the Chen distribution can be used to analyze the given data set.
In Table 5, we obtain the MLEs of unknown parameters of all the three competing
models including inverse Weibull and exponential distributions with respect to both the
data sets. We also report the Kolmogorov-Smirnov (K-S) statistics along with corre-
sponding p-values. From this table, we observe that the Chen distribution provides quite
good fit to the given data set compared to the other distributions.
We obtain the MLEs of ða; g; bÞ by using the formulae in Section 3. They are

â ¼ 0:0070; ĝ ¼ 0:0186, and b̂ ¼ 0:2289. Next, we obtain the MLE and 95% asymptotic

confidence interval for reliability Rs;j as R̂s;j ¼ 0:8549 and ð0:6385; 1Þ, respectively. The
upper limit of the asymptotic confidence interval is equal to 1 because its calculated
value is 1.0710 and the reliability must be less than or equal to 1. We mention that the
Bayes estimates are computed using the non-informative prior distribution. The Bayes

estimates of Rs;j by using Lindley approximation and MH algorithm are ~R
L
s;j ¼ 0:8408

and ~R
MH
s;j ¼ 0:8355, respectively. The 95% HPD interval for Rs;j is ð0:6670; 0:9713Þ.

7. Conclusions

In this article, we study the multicomponent stress-strength reliability when both stress
and strength variables follow the Chen distribution. We use classical and Bayesian
approaches to obtain the estimates of the reliability Rs;j when common parameter b
may be known or unknown. The exact Bayes estimate is also obtained when b is
known. We compute the Bayes estimates of Rs;j using Lindley approximation and HM
algorithm. We also obtain the UMVUE of Rs;j with known b and compare its perform-
ance with other proposed estimates. Based on the simulation results, we observe that, in
general, estimated risks of proposed estimators of Rs;j show good behavior with an
increase in sample size. However, exact behavior that risk strictly decreases with sample
size may not be observed using numerical simulations. In general, the average lengths
of the intervals tend to decrease as sample size increases. From tabulated results, we
find that estimated risks of Bayes estimates generally remain smaller than risks of the
other proposed procedures.

Table 5. Goodness of fit for the data X and Z separately.

Distribution
Data X Data Z

â b̂ K-S p-value ĝ b̂ K-S p-value

Bathtub 0.0084 0.2245 0.1442 0.60 0.0023 0.2922 0.2130 0.90
Inverse Weibull 0.5707 25.8900 0.2516 0.04 1.7360 15157 0.2181 0.90
Exponential 0.0010 0.1536 0.15 0.0024 0.2852 0.70
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